ΟΚΠ 42 1141, ΟΚΠ 42 1143

термопреобразователи сопротивления взрывозащищенные ТСП-0595, ТСМ-0595

Руководство по эксплуатации 2.822.020 РЭ

Перечень вложенных схем

Приложение В Чертеж средств взрывозащиты термпреобразователей сопротивления TCM-0595, TCП-0595

Настоящее руководство по эксплуатации предназначено для ознакомления с работой термопреобразователей сопротивления взрывозащищённых и содержит необходимый объём сведений, достаточный для их правильной эксплуатации (использования, транспортирования, хранения, технического обслуживания).

Использование термопреобразователей сопротивления должно производиться только после ознакомления со всеми разделами руководства по эксплуатации.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

Термопреобразователи сопротивления (в дальнейшем - ТС) платиновые ТСП-0595 и медные ТСМ-0595 взрывозащищенные предназначены для измерения температуры жидких и газообразных сред во взрывоопасных помещениях, в которых могут содержаться аммиак, азотоводородная смесь, углекислый газ, природный или конвертированный газ и его компоненты, а также агрессивные примеси сероводорода и сернистого ангидрида в допустимых пределах по ГОСТ 12.1.005-88.

Кратковременно (до 4 ч) допускается эксплуатация при концентрации примеси сероводорода до 100 мг/м³ или сернистого ангидрида до 200 мг/м³.

ТС имеют взрывобезопасный уровень взрывозащиты по ГОСТ

Р 51330.0-99, обеспечиваемый видом взрывозащиты «Взрывонепроницаемая оболочка» по ГОСТ Р 51330.1-99, и маркировку взрывозащиты «1ExdIICT5 X». Знак «Х» в маркировке означает особые условия монтажа и эксплуатации, изложенные в п.3.2.6.

ТС могут устанавливаться во взрывоопасных зонах помещений и наружных установок согласно главе 7.3 ПУЭ и другим документам, регламентирующим применение электрооборудования во взрывоопасных зонах, в которых возможно образование взрывоопасных смесей паров горючих жидкостей и газов с воздухом категорий IIA, IIB и IIC по ГОСТ Р 51330.11-99 групп Т1...Т5 согласно ГОСТ Р 51330.5-99.

Климатическое исполнение обыкновенное Д3 по ГОСТ Р 52931-2008, но при этом верхнее значение окружающего воздуха - до 100 °C.

1.2 Характеристики

1.2.1 Номинальная статическая характеристика преобразования по ГОСТ 6651-2009:

для ТСМ-0595 для ТСП-0595 50M, 100M 50П, 100П, Pt100 1.2.2 Диапазон измеряемых температур:

для ТСП-0595

для Кл. A от минус 50 до плюс 450 °C; для Кл. B от минус 50 до плюс 500 °C;

для ТСМ-0595

для Кл. A от минус 50 до плюс 120 °C; для Кл. B от минус 50 до плюс 150 °C.

1.2.3 Класс допуска по ГОСТ 6651-2009

A, B.

1.2.4 Номинальное сопротивлении R_0 и температурный коэффициент TC указаны в таблице 1:

Таблица 1

Тип TC	Обозна чение типа ТС	R ₀ , Ом	ά, °C ⁻¹
Платино	П	50, 100	0,00391
ВЫЙ	Pt	100	0,00385
Медный	М	50, 100	0,00428

где $\acute{\alpha}$ -температурный коэффициент термопреобразователя сопротивления, определяемый как $\acute{\alpha}$ =(R₁₀₀ - R₀) /R₀100 °C (где R₁₀₀, R₀-значения сопротивления TC по HCX соответственно при 100 °C и 0 °C).

1.2.5 Формулы для расчёта НСХ указаны в таблице 2:

Таблица 2

ά, °C ⁻¹	Диапазон измерени й, °С	Формула для расчёта НСХ	Значения постоянных А,В.С
0,00391	от-50 до 0	$R_t = R_0 \{1 + At + Bt^2 + C(t-100 ^{\circ}C)t^3\}$	A=3,9690x10 ⁻³ °C ⁻¹
	от 0 до 500	$R_{t}=R_{0}\{1+At+Bt^{2}\}$	B=-5,841x10 ⁻⁷ °C ⁻² C=-4,330x10 ⁻¹² °C ⁻⁴
0.00205	от-50 до 0	$R_t = R_0 \{1 + At + Bt^2 + C(t-100 ^{\circ}C)t^3\}$	A=3,9083x10 ⁻³ °C ⁻¹ B=-5,775x10 ⁻⁷ °C ⁻²
0,00385	от 0 до 500	$R_{t}=R_{0}\{1+At+Bt^{2}\}$	$C = -4,183 \times 10^{-12} ^{\circ}C^{-4}$
0.00400	от-50 до 0	$R_{t} = R_{0}\{1 + At + Bt(t + 6,7^{\circ}C) + Ct^{3}\}$	A=4,28x10 ⁻³ °C ⁻¹
0,00428	от 0 до 150	$R_t = R_0\{1+At\}$	B=-6,2032x10 ⁻⁷ °C ⁻² C=8,5154x10 ⁻¹⁰ °C ⁻³

где Rt- сопротивление TC, Ом, при температуре t,°C;

R₀- сопротивлениеТС, Ом, при температуре 0 °С

1.2.6 Допуски, соответствующие классу допуска ТС и ЧЭ приведены в таблице 3:

Таблица 3

·	1/	-		Допуск, Ом		
Тип ТС	A 50 100 B 50 100 A 50 100 B 50 50 100 50 50	Допуск, °С	при 0 °C	при 100 °C		
	۸	50	L/O 45 LO 000(H)	±0,03	±0,067	
Ппотиновний	A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	±0,13			
Платиновый	В 5	50	1(0.310.00EHI)	±0,06	±0,15	
	Ь	100		±0,12	±0,31	
	А	50	±(0,3+0,005 t) ±(0,15+0,002 t)	±0,03	±0,075	
Медный		100		±0,06	±0,15	
	D	50	1/0 2 10 00EH)	±0,064	±0,17	
	B	100	±(0,3+0,005 t)	±0,13	±0,34	

1.2.7 Минимальная глубина погружения, мм:

ТСП-0595, ТСП-0595-01, ТСМ-0595, ТСМ-0595-01 120 ТСП-0595-02, ТСМ-0595-02 80

1.2.8 Максимальный измерительный ток, мА: 5 для TC с напыленным чувствительным элементом: 1

1.2.9 Время термической реакции, с, не более значений, указанных в таблице 4 при скорости потока воды (0,4±0,1) м/с:

Таблица 4

Условное обозначение	Время терм циі	Обозначение	
исполнения ТС	без гильзы	с гильзой	защитной гильзы
TCM-0595	20	_	_
TCΠ-0595	20		_
TCM-0595-01	20	160	6.236.003
		120	8.236.001
TCΠ-0595-01	20	160	6.236.003
		120	8.236.001
TCΠ-0595-02,	8	160	6.236.003
TCM-0595-02		120	8.236.001

Примечание: Условные обозначения исполнений ТС указаны без длин монтажной части защитной арматуры

1.2.9 Материал:

защитной арматуры - сталь по ГОСТ 5632-72

(в зависимости от исполнения)

12X18H10T,

10X17H13M2T, 08X13

алюминиевый сплав АК12М2 ГОСТ 1583-93.

головок -

1.2.10 Степень защиты TC от воздействия пыли и воды по ГОСТ 14254-96

IP66

1.2.11 Диапазон условных давлений, МПа:

для ТСП-0595 - от 1 до 32 (в зависимости от исполнения); для ТСМ-0595 - от 1 до 32 (в зависимости от исполнения).

- 1.2.12 Группа виброустойчивости ТС по ГОСТ Р 52931-2008 N4
- 1.2.13 Электрическое сопротивление изоляции ТС, МОм, не менее:
- при температуре (25 \pm 10)°С и относительной влажности от 30 до 80%-
- при относительной влажности 98 % и при температуре 35 °C 0,5
 - 1.2.14 Режим работы постоянный.
 - 1.2.15 Диапазон температуры окружающей среды:

от минус 50 до плюс 100 °C

1.2.16 Степень механической прочности по ГОСТ Р 51330.0-99

высокая

1.2.17 Габаритные размеры, условные обозначения исполнений, номера кабельных вводов и масса ТС указаны на габаритном чертеже в приложении А.

Габаритные размеры, условное обозначение и номера кабельных вводов указаны в приложении Ж.

- 1.2.18 Схемы внутренних соединений 2-, 3-, 4-проводные даны в приложении Б.
 - 1.2.19 Средняя наработка до отказа, ч, не менее 25000.
 - 1.2.20 Вероятность безотказной работы за 1000 ч 0,85.

1.3 Состав изделия

Исполнения ТС указаны в приложении А. Основные детали и узлы приведены на чертеже средств взрывозащиты (поз.1...18) в приложении В, монтажные комплекты кабельных вводов – в приложении Ж.

1.4 Устройство и работа

- 1.4.1 Измерение температуры основано на зависимости сопротивления чувствительного элемента (ЧЭ) от температуры измеряемой среды.
- ТС типа ТСП-0595 комплектуются чувствительным элементом типа ЭЧП-0193, а ТС типа ТСМ-0595 -чувствительным элементом типа ЭЧМ-0193.
- 1.4.2 Чувствительные элементы помещены в защитную арматуру, состоящую из стальной трубки и головки для крепления выводов.

Тепловой контакт чувствительного элемента с защитной арматурой обеспечивается засыпкой порошка глинозема.

Способы крепления ТС - неподвижный штуцер M20x1,5 или свободная установка в патрубке.

Схема соединения ТС двух-, трех- и четырехпроводная.

1.4.3 ТС относятся к невосстанавливаемым, одноканальным, однофункциональным, неремонтируемым изделиям.

1.5 Маркировка и пломбирование

На крышке ТС имеется маркировка взрывозащиты

«1ExdIICT5 X», предупредительная надпись «Открывать, отключив от сети», выполненные в соответствии с ГОСТ Р 51330.0-99.

На паспортной табличке корпуса ТС должны быть указаны:

- товарный знак предприятия-изготовителя;
- порядковый номер по системе нумерации предприятияизготовителя;
 - дата выпуска;
 - маркировка взрывозащиты «1ExdIICT5 X»;
 - условное обозначение НСХ преобразования;
 - класс допуска;
 - условное обозначение схемы внутренних соединений;
 - рабочий диапазон измерений.

Места внутреннего и наружного заземления обозначены условными знаками, выполненными по ГОСТ 21130-75. Каждый ТС должен быть опломбирован.

2 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ

- 2.1 Взрывозащищенность ТС достигается заключением его электрических частей во взрывонепроницаемую оболочку, выполненную по ГОСТ Р. 51330.1-99, которая выдерживает давление взрыва внутри и исключает его передачу в окружающую взрывоопасную среду.
- 2.2 Прочность взрывонепроницаемой оболочки ТС проверяется при ее изготовлении путем испытаний корпуса и крышки головки ТС внутренним избыточным давлением 1,5 МПа в течение 10 сек.
- 2.3 Взрывонепроницаемость оболочки ТС обеспечивается применением щелевой взрывозащиты. На чертеже средств взрывозащиты (см. приложение В) словом «Взрыв» обозначены сопряжения деталей ТС и параметры, обеспечивающие его взрывозащиту: шаг резьбы, число полных непрерывных неповрежденных ниток в зацеплении.
- 2.4 Взрывонепроницаемость ввода кабеля ТС обеспечивается путем уплотнения его эластичным резиновым кольцом. Минимальная высота кольца в предельно сжатом состоянии 9,5 мм, что не превышает регламентированную по ГОСТ Р. 51330.1-99.

- 2.5 Крышка ТС предохранена от самоотвинчивания с помощью специального упора, а корпус кабельного ввода и арматура с помощью клея К 400. Заземляющие зажимы предохранены от самоотвинчивания применением пружинных шайб.
- 2.6 На корпусе TC имеются внутренний и наружный заземляющие зажимы
- 2.7 На крышке ТС имеется маркировка взрывозащиты «1ExdIICT5 X» и предупредительная надпись «Открывать, отключив от сети», выполненные в соответствии с ГОСТ Р 51330.0-99, где:
- «1» уровень взрывозащиты (для взрывобезопасного электрооборудования);
- «Ex» знак, указывающий, что электрооборудование соответствует ГОСТ Р 51330.0-99;
 - «d» вид взрывозащиты «Взрывонепроницаемая оболочка»;
 - «IIC» группа электрооборудования по ГОСТ Р 51330.11-99;
 - «Т5» температурный класс электрооборудования;
 - «Х» особые условия монтажа и эксплуатации.
- 2.8 Температура наружных поверхностей оболочки ТС не превышает допустимую по ГОСТ Р 51330.0-99 для температурного класса Т5 (100 °C). Собственного источника тепла ТС не имеют.

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Подготовка изделия к использованию

- 3.1.1 Проверить сохранность тары и пломбы на ней, снять пломбу, распаковать термометр и проверить комплектность.
- 3.1.2 Произвести внешний осмотр. Проверить соответствие габаритных размеров. Проверить соответствие паспортной таблички основным техническим данным в руководстве по эксплуатации.
- 3.1.3 Выдержать TC после извлечения из упаковки при температуре (25 ± 10) °C и относительной влажности от 30 до 80 % в течение 1-2 часов.

3.2 Обеспечение взрывозащищенности при монтаже

- 3.2.1 При монтаже ТС необходимо руководствоваться:
- «Правилами устройства электроустановок» ПУЭ (гл.7.3);
- инструкцией по проектированию электроустановок систем автоматизации технологических процессов ВСН 205-84;
 - настоящим руководством по эксплуатации;
 - нормативными документами, действующими в данной отрасли.

- 3.2.2 ТС могут устанавливаться в зонах в соответствии с маркировкой (см. назначение). Прежде чем приступить к монтажу ТС необходимо проверить наличие монтажной документации и осмотреть изделие. При осмотре следует обратить внимание на маркировку взрывозащиты, отсутствие поврежденной оболочки изделия и его кабеля, наличие средств уплотнения крышки и кабеля, наличие заземляющих и пломбировочных устройств.
- 3.2.3 ТС необходимо заземлить с помощью внутреннего и наружного заземляющих зажимов.
- 3.2.4 После подсоединения и уплотнения кабеля, необходимо проверить, чтобы кабель не выдергивался и не проворачивался в узле уплотнений, так как от этого зависит взрывонепроницаемость вводного устройства. Не допускается применять уплотнительные кольца, изготовленные на месте монтажа с отступлением от рабочих чертежей. Как правило, следует применять кольца предприятия-изготовителя.
- 3.2.5 Крышка должна быть плотно завинчена и один из ее пазов должен совместиться с пазом охранного кольца корпуса. После закрепления стопорной планки производится опломбирование ТС в соответствии с чертежом средств взрывозащиты (приложение В).
- 3.2.6 Если в месте установки ТС температура наружных частей объекта превышает 100 °C, необходимо теплоизолировать объект, исключив теплопередачу к головке и наружной части защитной арматуры ТС и обеспечив максимальную температуру наружной поверхности (100 °C).

3.3 Обеспечение взрывозащищенности при эксплуатации

- 3.3.1 При эксплуатации ТС необходимо руководствоваться гл.3.4 «Правил эксплуатации электроустановок потребителей» (ПЭЭП), настоящим руководством, местными инструкциями на оборудование в комплекте с которым работают ТС.
- 3.3.2 К эксплуатации ТС должны допускаться лица, освоившие настоящее руководство по эксплуатации и прошедшие необходимый инструктаж.
- 3.3.3 При эксплуатации ТС необходимо поддерживать его работоспособное состояние и выполнять все мероприятия в полном соответствии с разделом 3.2 «Обеспечение взрывозащищенности при монтаже».
- 3.3.4 Во время эксплуатации изделие должно подвергаться периодическому внешнему, а также профилактическому осмотрам.

При внешнем осмотре необходимо проверить:

- целостность оболочки электрооборудования и кабеля, отсутствие на них повреждений, наличие пломбировки стопорного устройства крышки;
- изделие должно быть чистым и находиться в нормальном положении;
 - наличие маркировки взрывозащиты;
 - взрывозащищенность в соответствии с подразделами 2.4 и 2.5.

3.3.5 Эксплуатация ТС с поврежденными деталями или неисправностями категорически запрещается.

3.4 Эксплуатация ТС

3.4.1 Подключить ТС к измерительной схеме, руководствуясь приложениями А и Б. Обеспечить номинальный измерительный ток (рекомендуемый) через ТС величиной 1 мА. Измерить сопротивление ТС Rt при определенной температуре t.

Определить значение измеряемой температуры t, пользуясь ГОСТ 6651-2009.

- 3.4.2 Для установки TC на место эксплуатации в зависимости от давления и скорости измеряемой среды могут быть использованы:
 - соединение штуцерное (приложение Г);
- гильзы защитные (приложения Д и E), которые поставляются за отдельную плату по отдельному договору.

4 МЕТОДИКА ПОВЕРКИ

4.1 Настоящий раздел устанавливает методику периодической поверки ТС. Требования к организации, порядку проведения и формы представления результатов поверки согласно приказу Минпромторга России от 02 июля 2015г. № 1815 «Об утверждении порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке.»

Межповерочный интервал 2 года.

4.2 Операции поверки, средства поверки, требования безопасности, условия поверки, подготовка и проведение поверки, обработка и оформление результатов поверки по ГОСТ 8.461-2009.

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И МЕРЫ БЕЗОПАСНОСТИ

Профилактические осмотры проводятся не реже одного раза в год. При этом выполняются все работы в объеме периодического внешнего осмотра, и проводится подтяжка контактных соединений и винтов заземляющих устройств.

При монтаже, демонтаже и обслуживании ТС на объекте необходимо соблюдать меры предосторожности от получения ожогов и других видов поражений в соответствии с правилами техники безопасности, установленными для объекта. По способу защиты человека от поражения электрическим током ТС относятся к классу ІІІ по ГОСТ 12.2.007.0-75.

Крышка головки должна быть опломбирована.

Замена, присоединение и отсоединение ТС от трубопроводов производится при полном отсутствии давления в трубопроводе.

6 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1 Условия транспортирования должны соответствовать условиям хранения 5 (навесы или помещения, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на откры-

том воздухе), для морских перевозок в трюмах - условиям хранения 3 и для тропического исполнения – условиям 6 по ГОСТ 15150-69.

- 6.2 Транспортирование ТС в упаковке предприятия-изготовителя должно производиться всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 6.3 Не допускается хранение ТС без упаковки в помещениях, содержащих газы и пары, вызывающие коррозию.

7 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Утилизация драгоценных металлов для ТС типа ТСП-0595 производится в соответствии с инструкцией № 67 Министерства финансов РФ «О порядке получения, расходования, учета и хранения драгоценных металлов и драгоценных камней на предприятиях, в учреждениях и организациях», утвержденной 04.08.92.

Приложение А

(справочное)

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ИСПОЛНЕНИЙ, ГАБАРИТНЫЕ РАЗМЕРЫ И МАССА

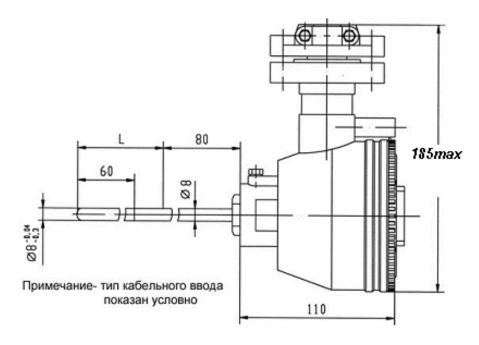
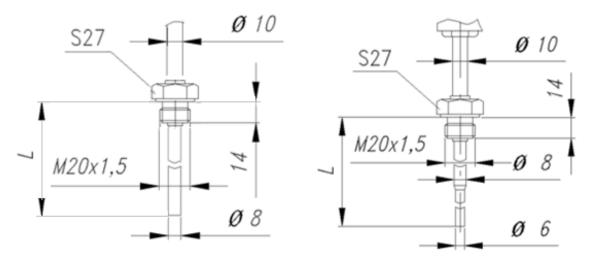



Рисунок А.1

Таблица А.1 - Технические данные TC

Условное обозначе	Длина мон-	Масса,	
НСХ преобразования 50М, 100М	НСХ преобразования 50П, 100П, Pt100	тажной ча- сти, L, мм	кг, не более
TCM-0595-160	ТСП-0595-160	160	1,80
TCM-0595-200	ТСП-0595-200	200	1,81
TCM-0595-250	ТСП-0595-250	250	1,82
TCM-0595-320	ТСП-0595-320	320	1,83
TCM-0595-400	ТСП-0595-400	400	1,84
TCM-0595-500	ТСП-0595-500	500	1,85
TCM-0595-1250	ТСП-0595-1250	1250	2,17
TCM-0595-2000	ТСП-0595-2000	2000	2,42
TCM-0595-3000	ТСП-0595-3000	3000	2,90
	Кабельный ввод - 1, 2, 3	3	

Рисунок А.2 (остальное см. рис.А.1)

Рисунок А.3 (остальное см. рис.А.1)

Таблица А.2 - Технические данные TC

Условное обозначен	Длина мон- тажной ча-	Масса, қг,	
НСХ преобразования	НСХ преобразования	сти, L, мм	не более
50M, 100M	50П, 100П, Pt100		
	Рисунок А.2		
TCM-0595-01-120	TCΠ-0595-01-120	120	2,05
TCM-0595-01-160	ТСП-0595-01-160	160	2,06
TCM-0595-01-200	ТСП-0595-01-200	200	2,07
TCM-0595-01-250	ТСП-0595-01-250	250	2,08
TCM-0595-01-320	ТСП-0595-01-320	320	2,09
TCM-0595-01-400	ТСП-0595-01-400	400	2,10
TCM-0595-01-500	ТСП-0595-01-500	500	2,11
TCM-0595-01-1250	ТСП-0595-01-1250	1250	2,50
TCM-0595-01-2000	ТСП-0595-01-2000	2000	2,80
TCM-0595-01-3000	ТСП-0595-01-3000	3000	3,00
	Кабельный ввод - 1, 2	, 3	

Таблица А.3 - Технические данные TC

Условное обозначен	Длина мон- тажной ча-	Масса, <u>к</u> г,	
НСХ преобразования	НСХ преобразования	сти, L, мм	не более
50M, 100M	50П, 100П, Pt100		
	Рисунок А.3		
TCM-0595-02-80	ТСП-0595-02-80	80	2,03
TCM-0595-02-100	ТСП-0595-02-100	100	2,04
TCM-0595-02-120	ТСП-0595-02-120	120	2,05
TCM-0595-02-160	ТСП-0595-02-160	160	2,06
TCM-0595-02-200	ТСП-0595-02-200	200	2,07
TCM-0595-02-250	ТСП-0595-02-250	250	2,08
TCM-0595-02-320	ТСП-0595-02-320	320	2,09
TCM-0595-02-400	ТСП-0595-02-400	400	2,10
TCM-0595-02-500	ТСП-0595-02-500	500	2,11
	Кабельный ввод - 1, 2,	, 3	

Приложение Б

(справочное)

СХЕМЫ СОЕДИНЕНИЙ ВНУТРЕННИХ ПРОВОДНИКОВ ТС С ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ

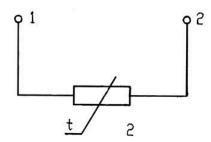


Рисунок Б.1 – двухпроводная схема соединения

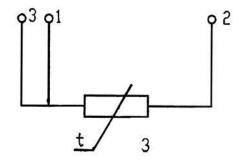


Рисунок Б.2 - трехпроводная схема соединения

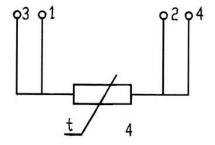
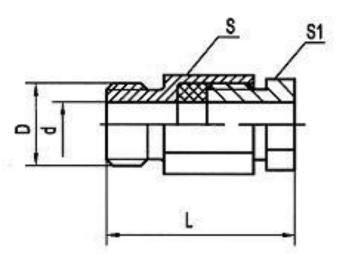



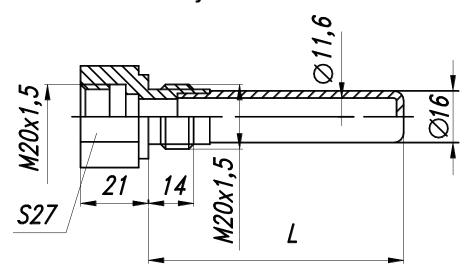
Рисунок Б.3 - четырехпроводная схема соединения

Приложение Г

(справочное)

СОЕДИНЕНИЕ ШТУЦЕРНОЕ 50006.454.004

Рисунок Г.1


Таблица Г.1

Обозначение	D, MM	д, мм	S, MM	S1, MM	L, MM	Мас- са, кг	Материал Сталь
Рисунок Г.1						ou, no	- Cilidate
6.454.004-00						0,11	12X18H10T
6.454.004-01	M20x1,5	40.5	27		48*	0,11	O8X13
6.454.004-02	M27x1,5	10,5	22		44*	0,12	12X18H10T
6.454.004-03			32	22	44	0,13	
6.454.004-04	M20x1,5		27		48*	0,14	O8X13
6.454.004-05	M27x1,5	8,3	32		44*	0,15	
6.454.004-06	M20x1,5		27		48*	0,14	12X18H10T

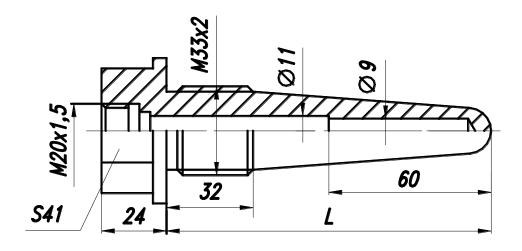
Приложение Д

(справочное)

ГИЛЬЗА ЗАЩИТНАЯ НА УСЛОВНОЕ ДАВЛЕНИЕ до Py = 25 M Па

Размеры для справок **Рисунок Д.1** - Гильза защитная 6.236.003

Таблица Д1


Обозначение	е и материал	Максимальная ско- рость потока, м/с			
Сталь 12X18H10T	Сталь 08X13	L, мм	пар	вода	Масса, кг
6.236.003 -00.1 -01.1 -02.1 -03.1	6.236.003 -15.1 -16.1 -17.1 -18.1	80 100 120 160	40	4	0,24 0,26 0,27 0,36
-04.1 -05.1 -06.1	-19.1 -20.1 -21.1	200 250 320	25	2,5	0,39 0,44 0,51
-07.1 -08.1 -09.1 -10.1 -11.1	-22.1 -23.1 -24.1 -25.1 -26.1	400 500 630 800 1000	5	0,5	0,59 0,69 0,72 0,99 1,19
-12.1 -13.1 -14.1	-27.1 -28.1 -29.1	1250 1600 2000	2	0,2	1,45 1,79 2,19

Условное давление Ру = 25 МПа, пробное давление Рпр = 35 МПа

Приложение Е

(справочное)

ГИЛЬЗА ЗАЩИТНАЯ НА УСЛОВНОЕ ДАВЛЕНИЕ до Py = 50 M Па

Размеры для справок **Рисунок Е.1** - Гильза защитная 8.236.001

Таблица Е.1

Обозначение	е и материал			тьная ско- тока, м/с	Massa	
Сталь 12X18H10T	Сталь 08X13	L, мм	пар	вода	- Масса, ке	
8.236.001 -00.1 -01.1	8.236.001 -05.1 -06.1	120 160	120	10	0,74 0,78	
-02.1 -03.1 -04.1	-07.1 -08.1 -09.1	200 250 320	100	7,5	0,97 1,05 1,24	
Условное д	Условное давление Ру = 50 МПа, пробное давление Рпр = 65 МПа					

Приложение Ж

(справочное)

МОНТАЖНЫЙ КОМПЛЕКТ КАБЕЛЬНОГО ВВОДА

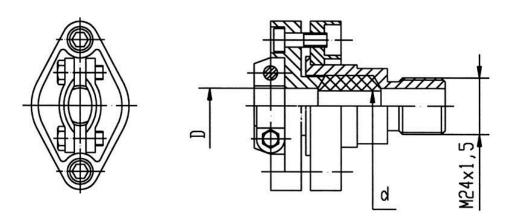
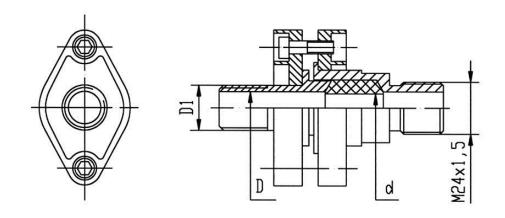



Рисунок Ж.1 - Для бронированного кабеля

Рисунок Ж.2 - Для трубного монтажа электрической соединительной линии

Таблица Ж.1

Обозначение монтажного комплекса	Puc.	D, мм	d, мм	D1, дюймы	Диаметр уплотняемо- го кабеля, мм	№ ка- бель- ного ввода
6.115.023-00*	Ж.1	15	9,6; 11,6;		8-13	1
-01*	Ж.2	15	12,6	G3/4"	8-13	2
-02	Ж.2	10,5	9,6	G1/2"	8-10	3

^{*}Для уплотнения кабелей в комплекте имеются прокладки с указанным размером d

СОДЕРЖАНИЕ

Введение	
1 Описание и работа	3
1.1 Назначение	3
1.2 Характеристики	3
1.3 Состав изделия	6
1.4 Устройство и работа	6
1.5 Маркировка и пломбирование	7
2 Обеспечение взрывозащищённости	7
3 Использование по назначению	8
3.1 Подготовка изделия к использованию	8
3.2 Обеспечение взрывозащищенности при монтаже	8
3.3 Обеспечение взрывозащищенности при эксплуатации	9
3.4 Эксплуатация ТС	10
4 Методика поверки	10
5 Техническое обслуживание и меры безопасности	10
6 Транспортирование и хранение	10
7 Сведения об утилизации	11
Приложения:	
Приложение А Условные обозначения исполнений, габаритные размеры и масса ТС типа ТСМ-0595, ТСП-0595	12
Приложение Б Схемы соединений внутренних проводников ТС с чувствительным элементом	14
Приложение Г Соединение штуцерное 50006.454.004	15
Приложение Д Гильза защитная на условное давление до Ру = 25 МПа	16
Приложение E Гильза защитная на условное давление до Ру = 50 МПа	17
Приложение Ж Монтажный комплект кабельного ввода	18

Перечень вложенных схем:

Приложение В Чертеж средств взрывозащиты преобразователей сопротивления типа ТСМ-0595, ТСП-0595

Контактная информация:

Адрес: 454047, г. Челябинск, ул. 2-я Павелецкая, 36

Телефон: (+7 351) 725-75-00 (многоканальный)

Факс: (+7 351) 725-89-59; 725-75-64

E-mail: sales@tpchel.ru http://www.tpchel.ru

Сервисная служба: (+7 351) 725-76-62; 725-74-72

Отдел продаж: (+7 351) 725-75-00; 725-89-68; 725-75-31

Отдел по работе с дилерами: (+7 351) 725-75-90

Отдел маркетинга: (+7 351) 725-75-14; 725-75-05; 725-89-72

reklama@tpchel.ru

Отдел закупок: (+7 351) 725-75-32

Техническая поддержка:

• термометрия: (+7 351) 725-89-44

• вторичные приборы контроля и регулирования, функциональная аппаратура: (+7 351) 725-76-43

Продукция произведена ООО «Теплоприбор-Сенсор»

<u>ЧТП</u> 2016